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Abstract 

An elliptical beam pipe is placed inside a quadrupole with rapidly changing 

field gradient. The eddy-current induced quadrupole field gradient inside the 

beam pipe is derived together with the AC eddy-current power loss at the 

walls of the beam pipe. The field gradient degradation inside the beam pipe is 

discussed and the expectations are compared with experimental measurements. 

*Operated by the Universities Research Association, Inc., under cont.ract. with the U.S. Depart- 

ment of Energy. 
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I. INTRODUCTION 

During a yt jump designed for the Fermilab Main Injector, the special jump 

quadrupoles will be ramped in a time duration of ru E 0.5 ms. Eddy current will 

be produced in the walls of the beam pipe leading to two consequences. First, 

the eddy current will produce an AC power loss. Second, the eddy current will 

generate a field gradient BL,,. which counteracts the quadrupole field gradient 

B’ ext produced by the external quadrupole current windings. This will lead 

to field gradient degradation and an elongation of the designed rise time of 

the it jump. In this paper, we compute in Sec. II the AC power loss of the 

eddy current in the walls of an elliptical beam pipe as well as the quadrupole 

field induced inside. The degradation of the penetrating quadrupole field is 

discussed in Sec. III for two different types of time variations. Finally, in Sec. IV, 

the theoretical expectations are compared with an experimental measurement 

performed at the Brookhaven National Laboratory. 

II. EDDY CURRENT 

We assume that the jump quadrupole has iron poles with magnetic perme- 

ability p = 00 so shaped that the field it produces is 2 = B&,(yci + ccij), or 

exactly quadrupole. The quadrupole is assumed to be infinite in the longitudi- 

nal direction so that all end effects can be neglected. The radial component of 

the magnetic field at any point, denoted by the polar coordinates (T, e), along 

the longitudinal line A in Fig. 1 can be written as 

Br(f3) = B&,rsin20 . (24 

Note that Eq. (2.1) is symmetric with respect to the 45” radial line 0 = n/4. 

Therefore, the magnetic field at the longitudinal line B; where 8 + ?r - 8, has 

exactly the same radial component. Join A and B by the circular surface of a 

cylinder centered along the z-axis. Now, as the magnetic field gradient Bdxt is 

changing, the longitudinal electric field E, at A, which is the same but opposite 

at B, can be obtained using Faraday’s law by integrating the radial component 

of the magnetic field over the surface AB. Thus, 

J 
n/J f&(Q) = 

0 
B&r sin 20 rdB = f&r2 cos 29 : (2.2) 
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Figure 1: The geometry of the elliptical beam pipe and the pole face of the 

quadrupole. 



where r is the radius of the cylindrical surface AB. 

We now bring in the elliptical beam pipe which fits snugly touching the 

magnet poles. The beam pipe has horizontal and vertical radii a and b. Con- 

sider the longitudinal line A to be on the surface of the beam pipe. Then, 

the eddy current along a longitudinal strip at A of width dl of the beam pipe 

surface is 

dI(0) = uE,(O)udt , (2.3) 

where u is the wall thickness of the beam pipe and 0 its conductivity. Choosing 

the parameterization of the elliptic cross section as 

x = a cos v, y = b sin 9 , (2.4) 

we can write 

di?= dG= a2 sin2 9 + b2 cos2 p dy . (2.5) 

The polar angle 0 and the ellipse parameterization angle 9 can be easily related 

by 
b 

tan9 = y = -tan+5 . (2.6) 
x a 

The eddy current will in turn produce an induced magnetic field at the 

bunch inside the beam pipe. Here, we assume that all higher multipoles of the 

induced field are small enough so that they can be neglected. In other words, 

the induced field will be quadrupole denoted by B’ = Bd,(yi + xjj) and its 

radial component given by Eq. (2.2) with the subscript ‘ext’ replaced by ‘ed’. 

To determine BLd, we employ Ampere’s law by equating the integration of the 

induced magnetic field along a radial line at a angle On, where the beam pipe 

touches the magnet pole, and then return along the x-axis to the eddy current 

enclosed. First, the determination of the angle 00. The cross section of the pole 

face is given by 

XY = f (2.7) 
where f is a constant. The intersection of the pole and the beam pipe leads to 

absinvo ~0s~~ = f , (2.8) 

while the equality of the tangents at the touching point leads to 

ab 
cos3 $90 
p-f. 
sin v. (2.9) 
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Therefore, 

90 = f and 90 = tan-’ b _ 
a 

The integration of the induced field along the 00 line gives 

J 
TO TO 

B, dr = J ‘O Bddr sin 200 = i abBL, 
0 0 

(2.10) 

(2.11) 

where 

a2 + b2 
l-0 = 

\i 2 

is the radial width of the beam pipe at angle t90 and we have made use of the 

fact that p = 00 inside the iron pole. The integral along the x-axis is zero 

because the quadrupole field has no radial component there. 

The contribution of the eddy current along the wall of the beam pipe can 

be obtained by integrating dI(B) in Eq. (2.3), or 

J 
00 00 

dI(8) = ;a&tu o J 
r/4 

( a2 cos2 y - b2 sin2 9) a2 sin2 9 + b2 cos2 9 dcp . 
0 

(2.12) 

From Ampere’s law, we finally obtain the induced field gradient, 

Bdd = - ;po&I&,,ubFe~( 5) , (2.13) 

where p. is the magnetic permeability in vacuum and Fed(%) is the form factor 

which takes the value of unity when a = b for a circular pipe. The form factor 

can be written as 

Fed(x) = f iT’l( x2 cos2 y - sin2 9) x2 sin2 9 + cos2 v dv . (2.14) 

which can be integrated to elliptical functions, and is plotting in Fig. 2. 

The AC power dissipated by the eddy current can be computed easily. In 

an element df of the wall of the beam pipe, the current is J,udi! where the 

density of the eddy current is Jz = aE,. The AC power dissipated per unit 

longitudinal length in the beam pipe is therefore 

p = (J&f)” J audl ’ 
(2.15) 

Substituting Eqs. (2.2), (2.3), and (2.5), we obtain 

P = $rc&$b” F, ( ;) , (2.16) 
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Figure 2: The form factor of the field gradient induced by the eddy current 

on the walls of an elliptical beam pipe. 

where the form factor 

F,(s) = :J,” (x2 cos2 y - sin2 q)” x2 sin2 9 + cos2 9 dc,s , (2.17) 

is set to unity when x = 1 for a circular pipe, and is plotted in Fig. 3. 

In the consideration of the yt-jump design of the Main Injector, the elliptical 

beam pipe has a/b = 1.56, which will be elongated to a/b zz 2.00 under vacuum. 

This gives Fed = 1.99 to 2.88 and F, = 3.13 to 10.34. This does not mean that 

the eddy-current AC power loss will increase by three times under vacuum, 

because the height of the beam pipe 2b will be shortened under vacuum and 

the AC power loss is proportional to b5 as indicated in Eq. (2.15). 
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Figure 3: The form factor of the AC power dissipated by the eddy current 

in the walls of an elliptical beam pipe. 

III. FIELD GRADIENT DEGRADATION 

The field gradient degradation inside the beam pipe depends very critically 

on how the external field is changing. First, let us consider a sinusoidal variation 

of the external field gradient: 

B;,,(t) = B;Ciwt , (34 

where t denotes time. Since the eddy-current-induced quadrupole field gradient 

BLd of Eq. (2.13) is proportional to I&, it is therefore 90” out of phase with 

B’ ext. A more careful derivation by matching boundary conditions at the beam 

pipe leads to [l] 

RI,= Bdxt + B:d _ 1 

Kxt 
Bl -- l- iwr 

= cos(wr) eid7, 
ext 

where Bin is the field gradient inside the beam pipe and 

(3.2) 

T = +bpod$d(f) (3.3) 
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is the characteristic time delay of the beam pipe. One can easily verify that 

Eq. (3.2) is the same as Eq. (2.13) provided that 

lBddi g iB:xtI. (3.4) 

By the way, we have always been working in a perturbative approach, which is 

valid only if the condition in Eq. (3.4) is satisfied. Therefore, the response to 

the external field gradient is 

Bin = B; COS(WT)?‘(~-~) . (3.5) 

Thus T actually represents a delay. The field gradient degradation is therefore 

I I 
&I 
Bll 

E &JT)2. (3.6) 

If we consider a rise time of re = 0.5 ms, it is reasonable to let w z rr’. For a 

circular stainless steel pipe of radius b = 3 in and wall thickness u = 0.0125 in, 

this degradation amounts to 

~~~=f(~)2=;(~)2-f(g)2=o.34%, (3.7) 

which is extremely small. This is because the eddy-current-induced field gra- 

dient is 90” out of phase, and is therefore quadratic in r/re. In above, S is the 

skin depth of the walls of the beam pipe. 

On the other hand, if the external field gradient behaves as 

BkxtW = i 2,-+ t < O : 
0 O t>o, 

(3.8) 

the eddy-current-induced field gradient Bdd will be in phase (modulus rr) with 

B’ ext * We therefore have a field gradient degradation 

B’ r 

I I ed =- 
B; r. ’ (3.9) 

which amounts to: for the above example of the stainless steel beam pipe, 8.2%: 

which is very much larger. 
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l-V. MEASUREMENT 

An experiment was performed at the Brookhaven National Laboratory us- 

ing circular beam pipes of radius b = 3 in and of various material and thickness 

placed inside a yt-jump quadrupole [2]. Initially, the quadrupole carries a con- 

stant field gradient Bh. At time t = 0, the field was discharged exponentially 

through a resistor with a time constant re = 0.5 ms. The time variation of the 

external field gradient is therefore described by Eq. (3.8). A pick-up coil was 

place inside the beam pipe to measure the rate at which the field gradient inside 

was changing, or &,(t), and was recorded as a voltage response V, relative to 

Vo, the situation when there was no beam pipe. 

Using Laplace transform and with the aid of Eq. (3.2), we can readily find 

the field gradient inside the beam pipe, 

t < 0, 

BlJt) = 
B:, _- 

( 
e--tlTo _ e--t/T 

> t 2 0, 
ro - r 

The pick-up coil picked up &,(t): which is for t 2 0, 

$&) = A!& (,-t/m _ ,-f/r) . 
To - 7- 

(4.1) 

Note that I&,(u)] rises from zero at t = 0, attains a maximum, and falls to 

zero again gradually. It is easy to show that the maximum occurs at 

and assumes the value 

t= 2Lln70, 
To-T -T 

(4.3) 

I&I,,, = $ (y”-T’ . (44 

Therefore, the effect of the beam pipe is a decrease and a delay in the 

measured peak voltage. In the limit of r + 0, or when there is no beam pipe, 

Eq. (4.4) gives 

(4.5) 

Thus, the relative response monitored by the pick-up coil is 

(4.6) 
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Some of the measurements are shown in Fig. 4. The top oscilloscope photo- 

graph is the situation without any beam pipe. The lower trace represents the 

quadrupole current discharging through a resistor, while the top trace repre- 

sents the rate of change of magnetic field gradient inside the beam pipe, l&l, 

which registered as Vo = 6.210 V through the pick-up coil. The time scale is 

50~s per division and there are 10 divisions in total. Although we expect no 

delay for the response theoretically, we notice that there is a delay of roughly 

75ps, which might have been due to the switching system. The lower photo- 

graph is the situation when an aluminum beam pipe of wall thickness 0.125 in 

was present. Here: the time scale is 500~s per division. We clearly see that the 

sharp exponential decay of the discharging quadrupole current and the rise of 

the response voltage V,, which is proportional to l&l inside the beam pipe. 

Notice that V, shows a maximum of 0.5459 V with a delay of roughly 1 ms. 

The experimental results and theoretical predictions are tabulated in Ta- 

ble I. For the theoretical expectations listed in the table, the resistivities 

p = 1.29, 0.74, and 0.0265 @-m have been used for Inconnel, stainless steel, 

and aluminum, respectively. We see that the maximum values of the response 

voltages are very well predicted, but the delays differ by a factor of 2. We would 

like to point out that theoretical predictions for the aluminum beam pipe are 

not believable. This is because r/r0 > 1: which falls outside the validity of our 

perturbative met hod. 

Table I: Induced field gradient inside a beam pipe subjected to 

a sudden shut off of an external quadrupole field. 

Stainless Steel 

Stainless Steel 

Thickness 

U 

0.020 in 

0.025 in 

0.062 in 

0.125 in 

T/TO Time delay WV0 

Theory Expt . Theory Expt . 

0.038 64 ps 0 PS 0.88 0.90 

0.082 110 /Ls 50 ps 0.80 0.76 

0.20 200 p 100 /LLs 0.67 0.68 

11.5 1140 ps 1000 /Ls 0.07 0.09 
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Figure 4. Experimental results showing the quadrupole discharging current 

and the response voltage, which is proportional to l&l inside the beam pipe. 

The top photograph is the situation without a beam pipe and the lower one 

is the situation when an aluminum beam pipe of wall thickness 0.125 in was 

present. 
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